

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. /B.Tech / B. Arch (Full Time) - END SEMESTER EXAMINATIONS, NOV / DEC 2024

INFORMATION TECHNOLOGY

VII Semester

ITM504 REINFORCEMENT LEARNING

(Regulation2019)

Max.Marks: 100

Time: 3hrs

CO 1	Understand the different terminologies of RL and concepts of Probability
CO 2	Illustrate the Markov decision Process and Bellman Equation for learning.
CO 3	Apply dynamic programming techniques to Markov Decision Process and Monte Carlo Methods
CO 4	Implement Time Differencing Learning for Real World Problems
CO 5	Apply the approximation methods for Learning and Q-Learning Techniques.

BL – Bloom's Taxonomy Levels

(L1-Remembering, L2-Understanding, L3-Applying, L4-Analysing, L5-Evaluating, L6-Creating)

PART- A(10x2=20Marks)
(Answer all Questions)

Q.No.	Questions	Marks	CO	BL
1	Explain the trade-off between exploration and exploitation in reinforcement learning. Why is it important, and how do algorithms like ϵ -greedy address this trade-off?	2	1	1
2	List out the components of Reinforcement learning.	2	1	1
3	What is a discount factor? Why is it required in reward calculation?	2	2	2
4	State the Markovian assumption. Why is it important?	2	2	2
5	State the characteristics of dynamic programming. State the Bellman equation.	2	3	2
6	What is the Monte Carlo algorithm for random walk?	2	3	2
7	State the differences between Q-learning and SARSA learning.	2	4	1
8	State the differences between online and offline policy.	2	4	1
9	What is the universal approximation theorem? How is it helpful for linear function approximation?	2	5	1
10	What is a policy gradient theorem?	2	5	1

PART- B(5x 13=65Marks)
(Restrict to a maximum of 2 subdivisions)

Q.No.	Questions	Marks	CO	BL
11 (a)	A two-state Markov chain consists of two states, let's call them S1 and S2, with a Transition Probability Matrix (TPM) that describes the probabilities of moving from one state to another. Suppose the TPM is:	13	1	L3

$$\begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

Assuming the initial probability distribution as (0.5,0.5), show the prediction after 3 years.

If the initial probability distribution is not given, how will you find it and repeat the prediction for 3 years?

OR

11 (b) Explain the multiarmed bandit problem. Explain the approaches of epsilon-greedy, softmax, UCB and Thompson approach for solving multiarmed bandit problem with respect to a company advertisement policy or three advertisements.

13

1

L3

12 (a) Explain in detail the value and policy iteration algorithms. Apply it to the following scenario:

13

2

L4

Assume a 3x3 grid. The goal is to reach the top-right corner (3,3) from the bottom-left corner (1,1). The states are each cell in the grid is a state, represented by its coordinates (x, y). Let the actions be **Up**, **Down**, **Left**, or **Right** (unless at the grid boundary where some actions are not allowed). The reward is +10 when you reach (3,3) and -1 for each step taken otherwise. Let the discount factor be 0.9. Let the transition probabilities be - 80% chance the intended action occurs and 20% chance you move randomly to one of the other adjacent cells.

Explain how the value and policy iteration algorithms work.

OR

12 (b) What is dynamic programming? List out its characteristics and explain how it is useful in solving the RL problems with the value and policy iteration.

13

2

L4

13 (a) Consider a 3x3 grid where you start at the top-left corner (0, 0) and aim to reach the bottom-right corner (2, 2). You can only move **right** or **down**. Each cell (i,j) has a cost associated with entering it, as given as

(0)	(1)	(2)	
(0)	1	4	5
(1)	5	6	10
(2)	11	8	9

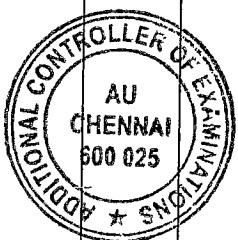
Find the shortest path using a dynamic programming approach.

OR

13 (b) Explain in detail the first visit and every visit MC algorithm. Outline the differences between them and highlight the differences with a simple numerical example.

13

3

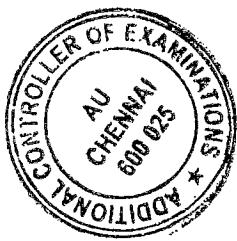

L3

14 (a) Explain the SARSA algorithm in detail. Take a grid problem and show the application of it.

13

4

L4


OR

14 (b)	Explain the Q-Learning algorithm in detail. Take a maze problem and show its application to find the solution.	13	4	<u>L4</u>
15 (a)	Explain the concept of policy gradient and explain the REINFORCE algorithm with its variants.	13	5	<u>L5</u>
OR				
15 (b)	Explain in detail the working of an actor-critic method and its implementation in A2C and A3C algorithms.	13	5	<u>L5</u>

PART- C(1x 15=15Marks)

(Q.No.16 is compulsory)

Q.No.	Questions	Marks	CO	BL
16.	<p>1. Find the optimal path from (3,1) to the goal (1,3) using dynamic programming. Assume the given minimum costs as given below:</p> <p>4 6 10 3 X 7 2 1 X</p> <p>The X's are obstacles. So, it is necessary to avoid that. What value would one assign then (high or low), and do accordingly and find the shortest path possibility.</p> <p>2. How would you approach the above problem using deep neural networks? Outline the approach of DQN networks with its implementation details to solve the above problem. Show layer-by-layer details of DQN.</p>	7 + 8	5	6

